Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(31): 12637-42, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23858467

RESUMO

In neurons, soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins drive the fusion of synaptic vesicles to the plasma membrane through the formation of a four-helix SNARE complex. Members of the Sec1/Munc18 protein family regulate membrane fusion through interactions with the syntaxin family of SNARE proteins. The neuronal protein Munc18a interacts with a closed conformation of the SNARE protein syntaxin1a (Syx1a) and with an assembled SNARE complex containing Syx1a in an open conformation. The N-peptide of Syx1a (amino acids 1-24) has been implicated in the transition of Munc18a-bound Syx1a to Munc18a-bound SNARE complex, but the underlying mechanism is not understood. Here we report the X-ray crystal structures of Munc18a bound to Syx1a with and without its native N-peptide (Syx1aΔN), along with small-angle X-ray scattering (SAXS) data for Munc18a bound to Syx1a, Syx1aΔN, and Syx1a L165A/E166A (LE), a mutation thought to render Syx1a in a constitutively open conformation. We show that all three complexes adopt the same global structure, in which Munc18a binds a closed conformation of Syx1a. We also identify a possible structural connection between the Syx1a N-peptide and SNARE domain that might be important for the transition of closed-to-open Syx1a in SNARE complex assembly. Although the role of the N-peptide in Munc18a-mediated SNARE complex assembly remains unclear, our results demonstrate that the N-peptide and LE mutation have no effect on the global conformation of the Munc18a-Syx1a complex.


Assuntos
Substituição de Aminoácidos , Proteínas Munc18/química , Peptídeos , Deleção de Sequência , Sintaxina 1/química , Humanos , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas SNARE/química , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Sintaxina 1/genética , Sintaxina 1/metabolismo
2.
EMBO J ; 27(7): 923-33, 2008 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-18337752

RESUMO

Sec1/Munc18-like (SM) proteins functionally interact with SNARE proteins in vesicular fusion. Despite their high sequence conservation, structurally disparate binding modes for SM proteins with syntaxins have been observed. Several SM proteins appear to bind only to a short peptide present at the N terminus of syntaxin, designated the N-peptide, while Munc18a binds to a 'closed' conformation formed by the remaining portion of syntaxin 1a. Here, we show that the syntaxin 16 N-peptide binds to the SM protein Vps45, but the remainder of syntaxin 16 strongly enhances the affinity of the interaction. Likewise, the N-peptide of syntaxin 1a serves as a second binding site in the Munc18a/syntaxin 1a complex. When the syntaxin 1a N-peptide is bound to Munc18a, SNARE complex formation is blocked. Removal of the N-peptide enables binding of syntaxin 1a to its partner SNARE SNAP-25, while still bound to Munc18a. This suggests that Munc18a controls the accessibility of syntaxin 1a to its partners, a role that might be common to all SM proteins.


Assuntos
Proteínas Munc18/metabolismo , Peptídeos/metabolismo , Proteínas SNARE/metabolismo , Sintaxina 1/química , Sintaxina 1/metabolismo , Animais , Sítios de Ligação , Calorimetria , Cristalografia por Raios X , Proteínas de Membrana/metabolismo , Modelos Moleculares , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Ratos , Termodinâmica , Proteínas de Transporte Vesicular/metabolismo
3.
Nature ; 446(7135): 567-71, 2007 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-17392788

RESUMO

Polarized exocytosis requires coordination between the actin cytoskeleton and the exocytic machinery responsible for fusion of secretory vesicles at specific sites on the plasma membrane. Fusion requires formation of a complex between a vesicle-bound R-SNARE and plasma membrane Qa, Qb and Qc SNARE proteins. Proteins in the lethal giant larvae protein family, including lethal giant larvae and tomosyn in metazoans and Sro7 in yeast, interact with Q-SNAREs and are emerging as key regulators of polarized exocytosis. The crystal structure of Sro7 reveals two seven-bladed WD40 beta-propellers followed by a 60-residue-long 'tail', which is bound to the surface of the amino-terminal propeller. Deletion of the Sro7 tail enables binding to the Qbc SNARE region of Sec9 and this interaction inhibits SNARE complex assembly. The N-terminal domain of Sec9 provides a second, high-affinity Sro7 interaction that is unaffected by the tail. The results suggest that Sro7 acts as an allosteric regulator of exocytosis through interactions with factors that control the tail. Sequence alignments indicate that lethal giant larvae and tomosyn have a two-beta-propeller fold similar to that of Sro7, but only tomosyn appears to retain the regulatory tail.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Proteínas Adaptadoras de Transdução de Sinal , Sequência Conservada , Cristalografia por Raios X , Exocitose , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Qc-SNARE/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
4.
Mol Cell ; 9(4): 751-60, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11983167

RESUMO

AAA proteins remodel other proteins to affect a multitude of biological processes. Their power to remodel substrates must lie in their capacity to couple substrate binding to conformational changes via cycles of nucleotide binding and hydrolysis, but these relationships have not yet been deciphered for any member. We report that when one AAA protein, Hsp104, engages polypeptide at the C-terminal peptide-binding region, the ATPase cycle of the C-terminal nucleotide-binding domain (NBD2) drives a conformational change in the middle region. This, in turn, drives ATP hydrolysis in the N-terminal ATPase domain (NBD1). This interdomain communication pathway can be blocked by mutation in the middle region or bypassed by antibodies that bind there, demonstrating the crucial role this region plays in transducing signals from one end of the molecule to the other.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Choque Térmico/química , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatases/fisiologia , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Animais , Anticorpos Antifúngicos/farmacologia , Anticorpos Monoclonais/farmacologia , Sítios de Ligação , Ativação Enzimática/efeitos dos fármacos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/imunologia , Proteínas de Choque Térmico/fisiologia , Hidrólise , Camundongos , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Polilisina/farmacologia , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/imunologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico/metabolismo , Relação Estrutura-Atividade
5.
Proc Natl Acad Sci U S A ; 99(5): 2732-7, 2002 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-11867765

RESUMO

Hsp104 from Saccharomyces cerevisiae is a hexameric protein with two AAA ATPase domains (N- and C-terminal nucleotide-binding domains NBD1 and NBD2, respectively) per monomer. Our previous analysis of the Hsp104 ATP hydrolysis cycle revealed that NBD1 and NBD2 have very different catalytic properties, but each shows positive cooperativity in hydrolysis. There is also communication between the two domains, in that ATP hydrolysis at NBD1 depends on the nucleotide that is bound to NBD2. Here, we extend our understanding of the Hsp104 ATP hydrolysis cycle through mutagenesis of the AAA sensor-2 motif in NBD2. To do so, we took advantage of the lack of tryptophan residues in Hsp104 to place a single tryptophan in the C-terminal domain (Y819W). The Y819W substitution has no significant effects on folding stability of the C-terminal domain or on ATP hydrolysis by NBD1 or NBD2. The fluorescence of this tryptophan changes in response to ATP and ADP binding, allowing the K(d) and Hill coefficient to be determined for each nucleotide. By using this site-specific probe of binding, we analyze the effect of mutating the conserved arginine residue in the sensor-2 motif in Hsp104 NBD2. An R826M mutation causes nearly equal decreases in affinity of NBD2 for both ATP and ADP, indicating that at this site, the sensor-2 provides binding energy, but does not act to sense the difference between these nucleotides. In addition, the rate of ATP hydrolysis at NBD1 is decreased by the R826M mutation, providing further evidence for interdomain communication in the Hsp104 ATP hydrolysis cycle.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Substituição de Aminoácidos , Corantes Fluorescentes , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Hidrólise , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Desnaturação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
EMBO J ; 21(1-2): 12-21, 2002 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-11782421

RESUMO

AAA proteins share a conserved active site for ATP hydrolysis and regulate many cellular processes. AAA proteins are oligomeric and often have multiple ATPase domains per monomer, which is suggestive of complex allosteric kinetics of ATP hydrolysis. Here, using wild-type Hsp104 in the hexameric state, we demonstrate that its two AAA modules (NBD1 and NBD2) have very different catalytic activities, but each displays cooperative kinetics of hydrolysis. Using mutations in the AAA sensor-1 motif of NBD1 and NBD2 that reduce the rate of ATP hydrolysis without affecting nucleotide binding, we also examine the consequences of keeping each site in the ATP-bound state. In vitro, reducing k(cat) at NBD2 significantly alters the steady-state kinetic behavior of NBD1. Thus, Hsp104 exhibits allosteric communication between the two sites in addition to homotypic cooperativity at both NBD1 and NBD2. In vivo, each sensor-1 mutation causes a loss-of-function phenotype in two assays of Hsp104 function (thermotolerance and yeast prion propagation), demonstrating the importance of ATP hydrolysis as distinct from ATP binding at each site for Hsp104 function.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , DNA Fúngico/genética , Proteínas de Choque Térmico/genética , Hidrólise , Cinética , Mutação , Concentração Osmolar , Fenótipo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...